DESCRIPTION OF THE REDUCTION IN TURBULENT
FRICTION DRAG IN VISCOELASTIC FLUIDS

V. A. Gorodtsov and A. I. Leonov UDC 539.517.4

A model description of the near-wall turbulent fluid flow with stress relaxation and after-
effect is proposed. It is shown that a large reduction in the friction drag and heat transfer
occurs.

Much literature (see the survey [1]) has been devoted to experimental investigations of turbulent
viscous fluid flows to which have been added macromolecular compounds, long fibers, etc. Among the
diverse viewpoints on the reasons for these phenomena, the hypothesis about the governing role of the
elastic properties of such solutions has gained great popularity, starting with the early experimental re-
searches [2-4].

It is known that upon the addition of polymers to a bounded turbulent stream, the turbulence charac-
teristics near the walls undergo a fundamental change while they vary insignificantly far from them, In-
vestigations of viscous fluid turbulence [5-14] also indicate the leading role of the near-wall zone. The
smooth laminar flow with quasi~periodic spatial characteristics being formed here is subjected to abrupt
distortions ("explosions") sufficiently regularly. Chaoctic turbulent pulsations also originate during these
"explosions." A schematic description of such a self-oscillating process of a viscous fluid flow (in the
"viscous sublayer" domain) had already been proposed comparatively long ago [5,15,16]. An analogous
schematization is used here to describe the flow of a viscoelastic fluid. T

External Turbulence. In describing steady developed turbulent flow, its whole domain can be sep-
arated into two zones rather conditionally. The external domain, far from the wall, has a large scale
structure independent of the specific fluid properties (viscosity, elasticity, etc.). A theoretical descrip-
tion of this zone is difficult because of the strong nonlinear interaction between the turbulent motions of
the various scales. However, at distances also far from the outer edge of the stream (from the center of
the pipe) the total mean shear stress becomes constant and equal to the stress at the wall, and the form of
the mean velocity profile is determined by dimensionality considerations

25nz* -+ B. (1)

The fluid is henceforth considered incompressible, and the system of measurement units is selected
such that the density is p = 1. The dynamic velocity us and the viscosity coefficient v hence form a com-
plete set of quantities with independent dimensionality and it is convenient to make all the quantities di-
mensionless with their aid. The dimensionless characteristics obtained in such a way are ordinarily
marked with a cross (+) over the appropriate dimensional letter value. Henceforth, mainly such dimen-
sionless characteristics are used and the crosses are omitted to simplify the writing.

The numerical coefficient 2.5 is known from experiment. The coefficient B can depend on the fluid
properties, and takes the following value for a viscous fluid

B, =~ 5.5. 2)

TTo the same end, a model description of the type [5,15,16] has already been considered earlier in [17-20].
However, no sufficiently complete quantitative analysis of the drag reduction has been obtained in these
papers.
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Dynamic Layer. The rheological properties of the fluid play the governing role in direct proximity
to the wall. For a large part of the time the flow here is nonstationary and laminar, where the nonlinear
peculiarities in the fluid behavior are important principally in the fast stage of destruction of this smooth
flow (in the "explosions"). Assuming the fast stage of the "explosions" not to yield a noticeable contribu-
tion to such mean characteristics as the mean velocity and the mean rheological stress (see [5]), let us
henceforth use simplified linear equations for their computation,

Many parameters, the frequency of the explosions, say, remain undetermined in the solution of the
linear problem, Additional "splicing" conditions for the mean characteristics in this dynamical zone and
in the domain of external turbulence permit calculation of their magnitude in such a description.

Let us describe the flow of a viscoelastic fluid in the near-wall dynamical layer by one-dimensional

linear equations
ou do 7} ) (i} du
<L p, 10 e a0y 2
a oz ( a ( ¥ 01\) oz @)

The pressure gradient P is considered constant here. For an elastic fluid

>0 1>y >0, 4
where the "elastic stress" is proportional to 1 —1y and v 6 is the time of the after effect [21].
The simplified equations (3) can be used to describe the smooth stage of flow development, but not at

the time of the "explosions:" Let us consider that the system again arrives in the initial state each time
as a result of the instantaneous "explosions"” occurring at random times.

Then if the "explosions" occur independently, the stationary random processes ult, z) and o(t, z)
will be Poisson processes with mean characteristics of the form

)y - —;—; exp (-—1/T) f(z, 0) dt, (5)
G
i.e., the mean characteristics of the dynamical layer are obtained by a Laplace transformation of the in-
stantaneous values.

After each "explosion”the turbulent mixing process includes the whole flow domain down to the wall.
Hence, constant values of the velocity and the tangential stress can be given as the simplest initial condi~
tions for (3). Together with the boundary conditions they will be '

ufz, 0y == U,, oz, 0y ==X, u(0, 1) =0, |u|<<oo. (6)

The appearance of a nonzero initial stress is due to the elastic properties of the fluid, and since the elas-
tic stresses are proportional to 1 —7 in the case under consideration, then

with a number 6 on the order of one. ‘

The solution of the system (3), (4), (6) results in the formulas

fulz)yy = U1 -—cxp (- -n2)), (8)

U
(G(2)D> =+ 7o Z - vl exp (—pz), )
1/2
U U, 4+ PT, pT'® = ({f%—) : (10)

Furthermore, from the assumption about the constancy of the total stress in the dynamical layer
(this is characteristic for developed turbulence when the thickness of the dynamical layer is very much
less than the pipe radius), there follows that the sum of the rheological stress <o > and the turbulent Rey-
nolds shear stress <u'v'> equals the stress on the wall, i.e.,

(o(z) s —(uv y=1 (11)

The Reynolds stress vanishes for z = 0 and taking account of (9), we have the following relationship
from (11)
UjT - 03/(T + 6) = 1. 12)
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Splicing Conditions. Other relationships between these parameters are obtained from the conditions
of splicing the dynamical layer and the external turbulence distributions

dou )
21-<—6;> = sIna 4B (o) = (13)

Culz)y=25Inz, + B, (0(z))=a,

The first point z, (the point of intersection between the linear asymptote valid in direct proximity to
the wall and the logarithmic profile of the external turblence (1)) is also characteristic by the fact that the
rheological stress (viscous friction in a viscous fluid) at this point is approximately equal in magnitude to
the Reynolds shear stress. In conformity with (11), the assumption about their exact equality reduces to
the second formula in (13) with '

@ = 1/2. (14)

Hence, at the point z, where the velocities of the dynamical layer (8) and the external turbulence (1)
are equal, the viscous stress also turns out to be constant in the case of a viscous fluid, i.e., the fourth
relationship in (13) is satisfied automatically and

o, =~ 0.164. . . (15)

Since the point z, is the exact outer boundary of the dynamical layer, it can then be expected that
this condition will be independent of the specific properties of the fluid, just as the other properties of the
external turbulence. On this basis (14) is assumed valid even for a viscoelastic fluid.

In sum, using (8), (9), (13)-(15), we obtain

zy = p YIn [T -0 —8(1 — ) 0] —1In[(T -- 0) o,y — 6 (1 -—7) 0]}, 16)
U = 2.51n (z,/2))] 1 pzy ——exp {(— nz,)| 72, 17)
B. wlz, —25lz, (k-1 2). 1s8)

The relationships (7), (12), (16), (17) permit the determination of T as a functionof fand y. In
turn, for a known T formula (18) permits finding B and thereby the complete determination of the distri-
bution (1). Integrating this distribution over the cross section of a circular pipe, we obtain a formula for
the turbulent friction dragt (q is the mean discharge velocity of the fluid)

V8% == 2.51n (Re }%/32) +- B — 3.75,
Re —2r, h= 8/q% (20)

(19)

In the case of a viscous fluid the coefficient B is here given by (2) and in the case of a viscoelastic fluid
by (18). The quantity B in terms of the dimensionless parameter 6 hence turns out to be dependent on the
dynamic velocity ux. In order to go over to a dependence of B on Re and A, it is convenient to introduce
the new dimensionless characteristic ’
re=rj(2170); 170 =(Re/(2r) ) A/32. (1)
The dimensionless characteristic T is independent of the quantity ux and is expressed by = r/(2
Vv0) in terms of the dimensional characteristics.

The flow will differ slightly from the viscous when the dimensionless parameter 6 is small. Hence
T/6 > 1 and the preceding formulas can be written in the form of the expansions

(22)
2y~ 11.6--0.146 (L — )0 -4-.. .,
7, =303 - 0528(1 —y)0 ...,
U VT 168--0158(1—7)60-1-...,
Ba~55--0136(1 —y)0--...
Within the framework of the same accuracy, we have for the drag coefficient

Mhg & 1 — 0.00078 (1 — y) 437 (Re/F)2, (23)
where A, is the drag coefficient of a viscous fluid. '

TFor simplicity, the profile (1) is considered to hold down to the pipe axis although, strictly speaking, it
is not true there. Just the same as neglecting details of the velocity distribution in the dynamical layer
for z; < r, this does not introduce a large error in (19).
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TABLE 1. Limit Values of the Parameters z;, z;, Tand Bin a
Viscoelastic Fluid with Large Aftereffect

v 0,85 0,88 0,91 0,94 0,97 1,0
2 35,5 24,2 18,8 15,4 13,3 11,6
z, 163 86,6 59,3 14,6 36,2 30,3
T 1870 950 615 440 345 282

B

26,5 16,3 1,5 8,5 6,8 5,5

It is seen from the formulas presented that in the presence of elasticity and for 6 # 0 the resistance
to the fluid flow is reduced, the thickness z; of the "viscous sublayer," the thickness z, of the "transition
layer,” the period T of dynamical layer pulsation (the time between "explosions”) and the coefficient B of
the velocity profile increase.

In the opposite case of small T/# there are three distinct possibilities. As T/6 decreases, the guan~
tity z, grows or can become infinite for some minimum value (T/6)yin = P/as > 0 or reaches a finite max-
imum value for T/ = 0 or grows without limit as T/6 — 0.

In the first case the asymptotically simplified formulas are for 6 =1
G xBx21 VP, Ul 1VT~23YP0, 2 I55Re} P, (24)
where P =1—a4y—7v > 0 here.
If P=1—a@y—vy <0, then both z, and the other quantities reach finite limit values for T/¢ = 0
Zy = Uln(l-——1/@2y) Y 2 —Uln( -Piy) 4,
U e 2541 a)jy (L~ 12y} In [ (- L) (1 —1/(2p))], @5)
T Uy, Be:azy--2581nz,.

Numerical values of these characteristics are presented in the table for certain y. Since B reaches
the limit value B here, then the limit dependence of » on Re will be analogous to the dependence in a vis-
cous fluid but with constant B in place of By. The form of this asymptote is evidently independent of the
pipe radius in contrast to what holds in (24).

Finally, if T/6 = 0 is a singularity of the dependence z, = z,{T/0), then an intermediate type of be-
havior holds (curve 5 in Fig. 1 and the dashed curves in Fig. 2 correspond to this case).

In order to determine the behavior of the characteristics under consideration for intermediate values
of the parameters ¢ and T/, numerical computations were performed using (8), (9), (16)-(21). The re-
sults of these calculations are presented as graphs in Figs. 1-4 for 8 = 1,

N / /J = /4_,;/
L/ %éf"”‘“
ol /{ — ~
0 @ 100 160 200 \i

Fig. 1. Dependence of the numerical parameter B
on V@t for the values v =0 (1); 0.5 (2); 0.75 (3);
0.83 (4); 0.8358... (5); 0.85 (6); 0.88 (7); 0.91 (8);
0.94 (9); 0.97 (10).
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Fig. 2. Curves of the drag A (Re, 7, v) for T equal to150
and 40, and v = 0; 0.5; 0.75; 0.83; 0.8358...;0.85;0.88;
0.91; 0,94; 0.97. The drag curves of turbulent friction
for a viscous fluid and for a viscoelastic fluid with vy
0.8358...andyY = 0 are drawn dashed.

DISCUSSION OF RESULTS

The behavior of B is illustrated in Fig. 1. It should be noted that it is impossible to attribute great
value to the asymptotic behavior of both B and the other characteristics for 8 > 1 since for high elasticity
the simplified description under consideration by using the linear equations (3) is too rough.

It is seen from the drag curves in Fig. 2 that the critical value of the Reynolds number corresponding

to the beginning of the drag reduction effect which increases as the pipe radius increases, depends on the
magnitude of the parameter 8. The slope of the reduced drag curve relative to the viscous fluid drag curve

depends on the magnitude of the parameter vy.

The change in the mean velocity profile in a viscoelastic fluid is shown in Fig. 3. The profile with
T/26 = 500 is close to the profile of a viscous fluid independently of the quantity v.. As T/20 decreases

a*
/
30
.
20 :
// /’

10 V.

g w0’ 0* z*

Fig. 3. Mean velocity profiles for Tt/0" = 10° (curve
1), T*/¢% =6 and v = 0.8358... (curve 2), T/67 =6
and ¥ = 0 (curve 3). The points correspond to z* = z7.
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/ Fig. 4. Dependence of the
' Reynolds stress <ut'v?'>
/ on the distance to the wall
9% for y = 0 and T*/6% = 10°
(curve 1), 20 (3), 10 (4), 6
(6) and for v = 0,8358,,.,
Tt/6% = 6 (curve 2).
425
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for v = 1 the profile becomes somewhat more filled. A great difference from the viscous profile holds
for small vy and T/26.

Finally, Fig. 4 illustrates how the Reynolds stresses change inthe constanttotal stress layer as
T/2¢ and v change. If is hence seen that suppression of the Reynolds stresses occurs as the fluid relax-
ation time grows.

A comparison between the results obtained and the results of experimental investigations of turbu-
lent flows of polymer solutions [1, 22-24] indicates they have much in common qualitatively. However, a
final quantitative comparison is still difficult since the rheological characteristics of these solutions are
not known in the majority of cases.

The case § = 1 for 8 = 1 is not different, in principle, from the case 6 = 1. In substance, the dis-
tinction reduces to a change in the dependence on y. However, the situation is different for 6 = 0, i.e.,
when the initial stress T is missing.* Hence, (12), (16)-(18) become

zy = 2.6z, -- L8ITWU, U ==U, = 168, 26)

27 - US—0-1- b (U3 — 0 + 4y0U3 ),
B == B,— 2.5 n (TjUj),

from which T < T = U% and 8T/86 < 0 follow, i.e., the period of near-wall layer oscillation turns out to
be less than the period of layer oscillation in a viscous fluid and drops as the elasticity grows. And z; and
. Zy diminish correspondingly. As regards the drag curves, they then have the shape for A= 0, of curves
going over from viscous type drag curves to asymptotics of the form

. 27)

A= 2 (8Ur/Re)>
Such a nature for the behavior of z;, z;, T and A is sharply different from what is observed for

polymer solutions.

Heat Transfer. In conclusion, within the framework of the model description of turbulence under
consideration, let us discuss other transfer processes. The profile of a passive impurity concentration
(temperature, say) in the external domain of a developed turbulent stream Re » 1, Pe >> 1 has the logar-

ithmic form
Alnz" + Be (28)
exactly as the mean velocity profile (1).

The concentration profile within the oscillating dynamic layer, measured from the concentration at
the walls, has a form analogous fo (8):
(c*y =V PrT (1—exp{—zVPr/T)). (29)

*Namely this case £ = 0 was discussed in [18-20].
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If the point z, is taken as the junction of the distributions (28) and (29), then we obtain the following
formula for B®

B = VPrT (1 —exp(-— 2,V PriT)) - Aclnz, (30)
which practically reduces to the relationship
B~ VPrT (31)
by virtue of the values of the parameters entering therein.
This same relationship is indeed obtained for a smooth merger of (28) and (29).
The formula for the heat transmission coefficient St becomes
A8 B (32)

St - ~1/
0445 - (BC — 0.4A°B)) A8 V 8TPr ~

from which it is seen that an abrupt reduction in the heat transmission coefficient occurs simultaneously
with the diminution in the friction drag. The deductions of experimental investigations of heat transmis-
sion in polymer solutions [25] agree qualitatively with the predictions following from (28)-(32).
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= rus/v;
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t* = mk/v;
T = Tubd/v;
ut = u/ux;
ot = o/u’;
% = z/ul;
Ug =Uy/ux;

NOTATION

is the longitudinal coordinate;

is the distance from the wall;

is the viscous sublayer thickness;

is the dynamic layer thickness;

is the time;

is the period of dynamic layer pulsation;

is the kinematic viscosity coefficient;

is the relaxation time;

is the ratio between the aftereffect and relaxation times;
is the velocity;

is the stress;

are the initial velocity and stress, respectively;
is the pressure;

is the dynamic velocity;

is the Reynolds stress;

is the Reynolds number defined by means of the mean flow rate velocity q and the pipe
diameter 2r;

is the Prandtl number;

is the Stanton number;

is the Peclet number;

are the numerical coefficients;

P = (dp/dx)v/u, ;

0% = /v

are the corresponding dimensionless values.
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